今天宠物迷的小编给各位宠物饲养爱好者分享乘方是什么的宠物知识,其中也会对乘方的概念及意义(乘法与乘方的概念)进行专业的解释,如果能碰巧解决你现在面临的宠物相关问题,别忘了关注本站哦,现在我们开始吧!
1.乘方的意义、各部分名称及读写
求n个相同乘数乘积的运算叫做乘方。乘方算是一个**运算。
2.在a^n中,相同的乘数a叫做底数,a的个数n叫做指数,乘方运算的结果a^n叫做幂。a^n读作a的n次方,如果把a^n看作乘方的结果,则读作a的n次幂。a的二次方(或a的二次幂)也可以读作a的平方;a的三次方(或a的三次幂)也可以读作a的立方。
3. 每一个自然数都可以看作这个数的一次方,也叫作一次幂。如:8可以看作8^1。当指数是1时,通常省略不写。
运算顺序:
先算乘方,后算乘除,最后算加减。
(1).相同乘数相乘的积用乘方表示
(2)根据乘方的意义计算出答案
乘方是指将某个量或符号提升到任意指定次幂或对它施加一个指定指数的行为或过程;或n 个 a 相乘的积称为 a 的 n 次幂。
在a^n中,相同的乘数a叫做底数,a的个数n叫做指数(exponent),乘方运算的结果a^n叫做幂。a^n读作a的n次方,如果把a^n看作乘方的结果,则读作a的n次幂。a的二次方(或a的二次幂)也可以读作a的平方;a的三次方(或a的三次幂)也可以读作a的立方。
如果2的3次方(也可以是2的立方),它就等于2x2x2=8,那么指数是多少就是多少个底数相乘,指数是1通常不写。
每一个自然数都可以看作这个数的一次方,也叫作一次幂。如:8可以看作8^1。当指数是1时,通常省略不写。
运算顺序:先括号,再乘方,接乘除,尾加减。
计算一个数的小数次方,如果那个小数是有理数,就把它化为p/q(即分数)的形式,那么任何一个数n的
/q次方就等于n的p次方再开q次根号。
特别地,0^n=0(n﹥0)n^0=1(n≠0)
乘方;幂 【解析】本提考查的是乘方的定义 根据乘方的定义即可得到结果。 求个相同因数积的运算叫做乘方,乘方的结果叫幂
乘方是指将某个量或符号提升到任意指定次幂或对它施加一个指定指数的行为或过程;或n 个 a 相乘的积称为 a 的 n 次幂。
在a^n中,相同的乘数a叫做底数,a的个数n叫做指数(exponent),乘方运算的结果a^n叫做幂。a^n读作a的n次方,如果把a^n看作乘方的结果,则读作a的n次幂。a的二次方(或a的二次幂)也可以读作a的平方;a的三次方(或a的三次幂)也可以读作a的立方。
如果2的3次方(也可以是2的立方),它就等于2x2x2=8,那么指数是多少就是多少个底数相乘,指数是1通常不写。
每一个自然数都可以看作这个数的一次方,也叫作一次幂。如:8可以看作8^1。当指数是1时,通常省略不写。
运算顺序:先括号,再乘方,接乘除,尾加减。
计算一个数的小数次方,如果那个小数是有理数,就把它化为p/q(即分数)的形式,那么任何一个数n的
/q次方就等于n的p次方再开q次根号。
特别地,0^n=0(n﹥0)n^0=1(n≠0)
乘方的概念
一.乘方的意义、各部分名称及读写
求n个相同乘数乘积的运算叫做乘方。乘方算是一个**运算。
在a^n中,相同的乘数a叫做底数,a的个数n叫做指数,乘方运算的结果a^n叫做幂。a^n读作a的n次方,如果把a^n看作乘方的结果,则读作a的n次幂。a的二次方(或a的二次幂)也可以读作a的平方;a的三次方(或a的三次幂)也可以读作a的立方。
每一个自然数都可以看作这个数的一次方,也叫作一次幂。如:8可以看作8^1。当指数是1时,通常省略不写。
运算顺序:先算乘方,后算乘除,最后算加减。
1.相同乘数相乘的积用乘方表示
2.根据乘方的意义计算出答案
1)9^4; 2)0^6。
9^4=9×9×9×9=6561
0^6=0×0×0×0×0×0=0
可以看出0^n=0
4.区别易混的概念
1)8^3与8×3; 2) 5×2与5^2; 3)4×5^2与(4×5)^2。
同底数幂的乘、除法法则
同底数幂的乘法法则:
同底数幂相乘除,原来的底数作底数,指数的和或差作指数。用字母表示为:
a^m×a^n=a^(m+n) 或 a^m÷a^n=a^(m-n) (m、n均为自然数)
1)15^2×15^3; 2)3^2×3^4×3^8; 3)5×5^2×5^3×5^4×…×5^90
1)15^2×15^3=15^(2+3)=15^5
2)3^2×3^4×3^8=3^(2+4+8)=3^14
3)5×5^2×5^3×5^4×…×5^90=5^(1+2+3+…+90)=5^4095
幂的乘方法则
a^m又叫做幂,如果把a^m看作是底数,那么它的n次方就可以表示为(a^m)^n。这就叫做幂的乘方。我们先来计算(a^3)^4。
把a3看作是底数,根据乘方的意义和同底数的幂的乘法法则可以得出:
(a^3)^4=a^3×a^3×a^3×a^3=a^(3+3+3+3)=a^(3×4)=a^12 即:(a^3)^4=a^(3×4)
同样,(a^2)^5=a^2×a^2×a^2×a^2×a^2=a^(2+2+2+2+2)=a^(2×5)=a^10 即:(a^2)^5=a^(2×5)
由以上例子可知,幂的乘方,底数不变,指数相乘。用字母表示为:(a^m)^n=a^(m×n)
(x^4)^2; (a^2)^4×(a^3)^5
(x^4)^2=x^(4×2)=x^8
(a^2)^4×(a^3)^5=a^(2×4)×a^(3×5)=a^8×a^15=a^(8+15)=a^23
积的乘方
积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘。用字母表示为:(a×b)^n=a^n×b^n
这个积的乘方法则也适用于三个以上乘数积的乘方。如:
(a×b×c)^n=a^n×b^n×c^n
平方差公式
两个数的和乘以这两个数的差,等于这两个数的平方差。用字母表示为:
(a+b)×(a-b)=a^2-b^2
这个公式叫做平方差公式。利用这个公式,可以使一些计算变得简便。
例 用简便方法计算104×96。
解:原式=(100+4)×(100-4)=100^2-42=10000-16=9984
完全平方公式
两数和(或差)的平方,等于它们的平方的和加上(或者减去)它们的积的2倍。用字母表示为:
(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2
上面这两个公式叫做完全平方公式。应用完全平方公式,可以使一些乘方计算变得简便。
例 计算下面各题: 1)105^2; 2)196^2。
1)105^2=(100+5)^2=100^2+2×100×5+5^2=10000+1000+25=11025
2)196^2=(200-4)^2=200^2-2×100×4+4^2=40000-800+16=39216
平方数的速算
有些较特殊的数的平方,掌握规律后,可以使计算速度加快,现介绍如下。
1.求由n个1组成的数的平方
我们观察下面的例子。
1^2=1
11^2=121
111^2=12321
1111^2=1234321
11111^2=123454321
111111^2=12345654321
……
由以上例子可以看出这样一个规律;求由n个1组成的数的平方,先由1写到n,再由n写到1,即:
11…1^2=1234…(n-1)n(n-1)…4321
n个1
注意:其中n只占一个数位,满10应向前进位,当然,这样的速算不宜位数过多。
2.由n个3组成的数的平方
我们仍观察具体实例:
3^2=9
33^2=1089
333^2=110889
3333^2=11108889
33333^2=111108889
由此可知:
33…3^2 = 11…11 0 88…88 9
n个3 (n-1)个1 (n-2)个8
3.个位数字是5的数的平方
把a看作10的个数,这样个位数字是5的数的平方可以写成;(10a+5)^2的形式。根据完全平方式推导;
(10a+5)^2=(10a)^2+2×10a×5+5^2
=100a^2+100a+25
=100a×(a+1)+25
=a×(a+1)×100+25
由此可知:个位数字是5的数的平方,等于去掉个位数字后,所得的数与比这个数大1的数相乘的积,后面再写上25。
例 计算 1)45^2; 2)115^2。
解:1)原式=4×(4+1)×100+25 2)原式=11×(11+1)×100+25
=2000+25 =11×12×100+25
=2025 =13200+25
=13225
4.同指数幂的乘法
a^2×b^2是同指数的幂相乘,可以写成下面形式:
a^2×b^2=a×a×b×b=(a×b)×(a×b)=(a×b)^2
由此可知:同指数幂的乘法,等于底数的乘积做底数,指数不变。根据这个法则可以使计算简便。如: 2^2×5^2=(2×5)^2=10^2=100
2^3×5^3=(2×5)^3=10^3=1000 2^4×5^4=(2×5)^4=10^4=10000
根据上面算式,可以得出这样一个结论
乘方的概念
一.乘方的意义、各部分名称及读写
求n个相同乘数乘积的运算叫做乘方。乘方算是一个**运算。
在a^n中,相同的乘数a叫做底数,a的个数n叫做指数,乘方运算的结果a^n叫做幂。a^n读作a的n次方,如果把a^n看作乘方的结果,则读作a的n次幂。a的二次方(或a的二次幂)也可以读作a的平方;a的三次方(或a的三次幂)也可以读作a的立方。
每一个自然数都可以看作这个数的一次方,也叫作一次幂。如:8可以看作8^1。当指数是1时,通常省略不写。
运算顺序:先算乘方,后算乘除,最后算加减。
1.相同乘数相乘的积用乘方表示
2.根据乘方的意义计算出答案
1)9^4; 2)0^6。
9^4=9×9×9×9=6561
0^6=0×0×0×0×0×0=0
可以看出0^n=0
4.区别易混的概念
1)8^3与8×3; 2) 5×2与5^2; 3)4×5^2与(4×5)^2。
同底数幂的乘、除法法则
同底数幂的乘法法则:
同底数幂相乘除,原来的底数作底数,指数的和或差作指数。用字母表示为:
a^m×a^n=a^(m+n) 或 a^m÷a^n=a^(m-n) (m、n均为自然数)
1)15^2×15^3; 2)3^2×3^4×3^8; 3)5×5^2×5^3×5^4×…×5^90
1)15^2×15^3=15^(2+3)=15^5
2)3^2×3^4×3^8=3^(2+4+8)=3^14
3)5×5^2×5^3×5^4×…×5^90=5^(1+2+3+…+90)=5^4095
幂的乘方法则
a^m又叫做幂,如果把a^m看作是底数,那么它的n次方就可以表示为(a^m)^n。这就叫做幂的乘方。我们先来计算(a^3)^4。
把a3看作是底数,根据乘方的意义和同底数的幂的乘法法则可以得出:
(a^3)^4=a^3×a^3×a^3×a^3=a^(3+3+3+3)=a^(3×4)=a^12 即:(a^3)^4=a^(3×4)
同样,(a^2)^5=a^2×a^2×a^2×a^2×a^2=a^(2+2+2+2+2)=a^(2×5)=a^10 即:(a^2)^5=a^(2×5)
由以上例子可知,幂的乘方,底数不变,指数相乘。用字母表示为:(a^m)^n=a^(m×n)
(x^4)^2; (a^2)^4×(a^3)^5
(x^4)^2=x^(4×2)=x^8
(a^2)^4×(a^3)^5=a^(2×4)×a^(3×5)=a^8×a^15=a^(8+15)=a^23
积的乘方
积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘。用字母表示为:(a×b)^n=a^n×b^n
这个积的乘方法则也适用于三个以上乘数积的乘方。如:
(a×b×c)^n=a^n×b^n×c^n
平方差公式
两个数的和乘以这两个数的差,等于这两个数的平方差。用字母表示为:
(a+b)×(a-b)=a^2-b^2
这个公式叫做平方差公式。利用这个公式,可以使一些计算变得简便。
例 用简便方法计算104×96。
解:原式=(100+4)×(100-4)=100^2-42=10000-16=9984
完全平方公式
两数和(或差)的平方,等于它们的平方的和加上(或者减去)它们的积的2倍。用字母表示为:
(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2
上面这两个公式叫做完全平方公式。应用完全平方公式,可以使一些乘方计算变得简便。
例 计算下面各题: 1)105^2; 2)196^2。
1)105^2=(100+5)^2=100^2+2×100×5+5^2=10000+1000+25=11025
2)196^2=(200-4)^2=200^2-2×100×4+4^2=40000-800+16=39216
平方数的速算
有些较特殊的数的平方,掌握规律后,可以使计算速度加快,现介绍如下。
1.求由n个1组成的数的平方
我们观察下面的例子。
1^2=1
11^2=121
111^2=12321
1111^2=1234321
11111^2=123454321
111111^2=12345654321
……
由以上例子可以看出这样一个规律;求由n个1组成的数的平方,先由1写到n,再由n写到1,即:
11…1^2=1234…(n-1)n(n-1)…4321
n个1
注意:其中n只占一个数位,满10应向前进位,当然,这样的速算不宜位数过多。
2.由n个3组成的数的平方
我们仍观察具体实例:
3^2=9
33^2=1089
333^2=110889
3333^2=11108889
33333^2=111108889
由此可知:
33…3^2 = 11…11 0 88…88 9
n个3 (n-1)个1 (n-2)个8
3.个位数字是5的数的平方
把a看作10的个数,这样个位数字是5的数的平方可以写成;(10a+5)^2的形式。根据完全平方式推导;
(10a+5)^2=(10a)^2+2×10a×5+5^2
=100a^2+100a+25
=100a×(a+1)+25
=a×(a+1)×100+25
由此可知:个位数字是5的数的平方,等于去掉个位数字后,所得的数与比这个数大1的数相乘的积,后面再写上25。
例 计算 1)45^2; 2)115^2。
解:1)原式=4×(4+1)×100+25 2)原式=11×(11+1)×100+25
=2000+25 =11×12×100+25
=2025 =13200+25
=13225
4.同指数幂的乘法
a^2×b^2是同指数的幂相乘,可以写成下面形式:
a^2×b^2=a×a×b×b=(a×b)×(a×b)=(a×b)^2
由此可知:同指数幂的乘法,等于底数的乘积做底数,指数不变。根据这个法则可以使计算简便。如: 2^2×5^2=(2×5)^2=10^2=100
2^3×5^3=(2×5)^3=10^3=1000 2^4×5^4=(2×5)^4=10^4=10000
根据上面算式,可以得出这样一个结论:
乘方;幂 【解析】本提考查的是乘方的定义 根据乘方的定义即可得到结果。 求个相同因数积的运算叫做乘方,乘方的结果叫幂
上一篇
装载机具体有哪些用途?