今天宠物迷的小编给各位宠物饲养爱好者分享原函数是什么的宠物知识,其中也会对请问,怎样求出原函数?谢谢。请详细的解答。感激不尽。(常见的函数求原函数)进行专业的解释,如果能碰巧解决你现在面临的宠物相关问题,别忘了关注本站哦,现在我们开始吧!
题目呢?假设F(x)是f(x)的原函数,那么,F’(x)=f(x)。
也就是要求原函数,你要背下每一个常用函数的求导公式,背得就能逆推出原函数。
对于复杂的函数或者复合函数的原函数就是用凑微分法或者分部积分法来求原函数。比如说2/(1+4x^2)的原函数就是S 2/(1+4x^2)dx=S 1/(1+(2x)^2)d2x=arctan(2x)+C
原函数的定义 primitive function 已知函数f(x)是一个定义在某区间的函数,如果存在函数F(x),使得在该区间内的任一点都有 dF(x)=f(x)dx, 则在该区间内就称函数F(x)为函数f(x)的原函数。 例:sinx是cosx的原函数。 关于原函数的问题 函数f(x)满足什么条件是,才保证其原函数一定存在呢?这个问题我们以后来解决。若其存在原函数,那么原函数一共有多少个呢? 我们可以明显的看出来:若函数F(x)为函数f(x)的原函数, 即:F'(x)=f(x), 则函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数, 故:若函数f(x)有原函数,那末其原函数为无穷多个. 如果定义在(a,b)上的函数F(x)和f(x)满足条件:对每一x∈(a,b),F′(x)=f(x)?则称F(x)为f(x)的一个原函数。例如,x3是3x2的一个原函数,易知,x3+1和x3+2也都是3x2的原函数。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的,例如:已知作直线运动的物体在任一时刻t的速度为v=v(t),要求它的运动规律 ,就是求v=v(t)的原函数。原函数的存在问题是微积分学的基本理论问题,当f(x)为连续函数时,其原函数一定存在。
根据定义微分与积分实际上是互为逆运算,即微分是已知原函数然后求导,
求不定积分是已知导数求原函数。然而求一个函数的导函数往往很好求,
求导甚至不需要知道具体的表达式(如隐函数的求导),但反过来
求不定积分,就不是那么容易了。所以一些基本函数与其导函数的转化关系
一定要熟,当已知导函数,立刻想到其原函数,问题便会迎刃而解。所以
导数与原函数的对应关系(即所谓的常用导数表或积分表),一定要熟。
根据原始的不定积分定义,求不定积分,就得熟知积分表,抛开它就
无法下手。
也就是说:
已知函数f(x)是一个定义在某区间的函数,如果存在函数F(x),使得在该区间内的任一点都有
dF(x)=f(x)dx,
则在该区间内就称函数F(x)为函数f(x)的原函数。
例:sinx是cosx的原函数。
关于原函数的问题
函数f(x)满足什么条件是,才保证其原函数一定存在呢?这个问题我们以后来解决。若其存在原函数,那么原函数一共有多少个呢?
我们可以明显的看出来:若函数F(x)为函数f(x)的原函数,
即:F'(x)=f(x),
则函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,
故:若函数f(x)有原函数,那末其原函数为无穷多个.
如果定义在(a,b)上的函数F(x)和f(x)满足条件:对每一x∈(a,b),F′(x)=f(x)�则称F(x)为f(x)的一个原函数。例如,x3是3x2的一个原函数,易知,x3+1和x3+2也都是3x2的原函数。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的,例如:已知作直线运动的物体在任一时刻t的速度为v=v(t),要求它的运动规律 ,就是求v=v(t)的原函数。原函数的存在问题是微积分学的基本理论问题,当f(x)为连续函数时,其原函数一定存在。
这是高等数学中的概念。 原函数:已知函数f(x)是一个定义在某区间的函数,如果存在函数F(x),使得在该区间内的任一点都有dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。对f(x)进行积分既可以得到原函数F(x),对F(x)微分就可以得到f(x)。 不定积分:相对定积分而言,其最后解得的表达式中存在不定的一个常数。对sinx+c进行微分得到cosx,其中c为任意常数,若是对cosx进行不定积分就是得到sinx+c。若是进行定积分则是没有不定常数,则在题目中会给出限定条件,例如原函数在x=0时值为1,则对cosx进行积分得到sinx+c,x=0时sinx+c=1,所以c=1,所以cosx的定积分为sinx+1。.
一个函数的原函数求法:对这个函数进行不定积分。 原函数是指对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。 图片问题: ∫1/xdx=ln丨x丨+c。 ∫sin4x=1/4∫sin4xd4x=-1/4cos4x+c。 扩展资料: 若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。 函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。 例如:x³是3x²的一个原函数,易知,x³+1和x³+2也都是3x²的原函数。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的。 例如:已知作直线运动的物体在任一时刻t的速度为v=v(t),要求它的运动规律 ,就是求v=v(t)的原函数。原函数的存在问题是微积分学的基本理论问题,当f(x)为连续函数时,其原函数一定存在。
一个函数的原函数求法:对这个函数进行不定积分。 原函数是指对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。 图片问题: ∫1/xdx=ln丨x丨+c。 ∫sin4x=1/4∫sin4xd4x=-1/4cos4x+c。 扩展资料: 若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。 函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。 例如:x³是3x²的一个原函数,易知,x³+1和x³+2也都是3x²的原函数。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的。 例如:已知作直线运动的物体在任一时刻t的速度为v=v(t),要求它的运动规律 ,就是求v=v(t)的原函数。原函数的存在问题是微积分学的基本理论问题,当f(x)为连续函数时,其原函数一定存在。
因为(ⅹ^2)'=2ⅹ,所以x的原函数是1/2x^2+c,c是常数,这个函数的导函数是x。 原函数存在定理 若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。 函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。 例如:x3是3x2的一个原函数,易知,x3+1和x3+2也都是3x2的原函数。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的。 例如:已知作直线运动的物体在任一时刻t的速度为v=v(t),要求它的运动规律 ,就是求v=v(t)的原函数。原函数的存在问题是微积分学的基本理论问题,当f(x)为连续函数时,其原函数一定存在。
本文由宠物迷 百科常识栏目发布,非常欢迎各位朋友分享到个人朋友圈,但转载请说明文章出处“请问,怎样求出原函数?谢谢。请详细的解答。感激不尽。”
上一篇
如何训练金毛犬